Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biochem Mol Toxicol ; 38(4): e23680, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38511245

RESUMO

Bronchopulmonary dysplasia (BPD) is a chronic respiratory disease in newborns, which severely influences the health of infants and lacks effective clinical treatment strategies. The pathogenesis of BPD is correlated to enhanced inflammation and activated oxidative stress (OS). The application of antioxidants and anti-inflammatory treatment could be hot spots for BPD treatment. Nesfatin-1, a peptide with a suppressive property against inflammation, was tested herein for its potential therapeutic value in BPD. Neonatal SD rats were stimulated with hyperoxia, followed by being intraperitoneally administered with 20 µg/kg/day Nesfatin-1 for 2 weeks. Decreased RAC value in lung tissues, increased wet weight/dry weight (W/D) pulmonary ratio and bronchoalveolar lavage fluid (BALF) proteins, elevated cytokine release in BALF, increased malondialdehyde (MDA) content, and declined superoxide dismutase (SOD) activity were observed in BPD rats, all of which were sharply mitigated by Nesfatin-1. Rat epithelial type II cells (AECIIs) were handled with hyperoxia, and then cultured with 1 and 10 nM Nesfatin-1. Reduced cell viability, elevated lactate dehydrogenase production, elevated cytokine secretion, elevated MDA content, and decreased SOD activity were observed in hyperoxia-handled AECIIs, all of which were markedly alleviated by Nesfatin-1. Furthermore, activated nuclear factor-κB (NF-κB) signaling observed in both BPD rats and hyperoxia-handled AECIIs were notably repressed by Nesfatin-1. Collectively, Nesfatin-1 alleviated hyperoxia-triggered BPD by repressing inflammation and OS via the NF-κB signaling pathway.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Animais , Humanos , Recém-Nascido , Ratos , Animais Recém-Nascidos , Displasia Broncopulmonar/tratamento farmacológico , Displasia Broncopulmonar/etiologia , Displasia Broncopulmonar/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Hiperóxia/metabolismo , Inflamação/metabolismo , Pulmão/metabolismo , NF-kappa B/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Superóxido Dismutase/metabolismo
2.
Food Funct ; 12(18): 8583-8593, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34338272

RESUMO

Caffeoylquinic acids, as plant-derived polyphenols, exhibit multiple biological activities such as antioxidant, anti-inflammatory, and neuroprotective activities. However, only limited information about their effect on longevity is available. In the current study, molecular docking was employed to explore the interactions between six representative caffeoylquinic acids and the insulin-like growth factor-1 receptor (IGFR), which is an important target protein for longevity. The results indicated that all six compounds were embedded well in the active pocket of IGFR, and that 3,5-diCQA exhibited the strongest affinity to IGFR. Moreover, ASP1153, GLU1080, ASP1086, and ARG1003 were the key amino acid residues during the interaction of these 6 compounds with IGFR. Furthermore, the lifespan extension effect of caffeoylquinic acids was evaluated in a Caenorhabditis elegans (C. elegans) model. The results revealed that all the caffeoylquinic acids significantly extended the lifespan of wild-type worms, of which 3,5-diCQA was the most potent compound. Meanwhile, 3,5-diCQA enhanced the healthspan by increasing the body bending and pharyngeal pumping rates and reducing the intestinal lipofuscin level. Further studies demonstrated that 3,5-diCQA induced longevity effects by downregulating the insulin/insulin-like growth factor signaling (IIS) pathway. This study suggested that the combination of molecular docking and genetic analysis of specific worm mutants could be a promising strategy to reveal the anti-aging mechanisms of small molecule natural compounds.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Ácido Clorogênico/farmacologia , Cinamatos/farmacologia , Longevidade/efeitos dos fármacos , Ácido Quínico/análogos & derivados , Envelhecimento/efeitos dos fármacos , Animais , Sítios de Ligação , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Ácido Clorogênico/análogos & derivados , Ácido Clorogênico/química , Ácido Clorogênico/metabolismo , Cinamatos/química , Cinamatos/metabolismo , Regulação da Expressão Gênica , Insulina/metabolismo , Simulação de Acoplamento Molecular , Ácido Quínico/química , Ácido Quínico/metabolismo , Ácido Quínico/farmacologia , Receptor IGF Tipo 1/química , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/genética
3.
Aging Dis ; 7(5): 623-634, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27699085

RESUMO

Among various therapeutic approaches for stroke, treatment with human umbilical cord mesenchymal stem cells (hUC-MSCs) has acquired some promising results. However, the underlying mechanisms remain unclear. We analyzed the protein expression spectrum of the cortical peri-infarction region after ischemic stroke followed by treatment with hUC-MSCs, and found 16 proteins expressed differentially between groups treated with or without hUC-MSCs. These proteins were further determined by Gene Ontology term analysis and network with CD200-CD200R1, CCL21-CXCR3 and transcription factors. Three of them: Abca13, Grb2 and Ptgds were verified by qPCR and ELISA. We found the protein level of Abca13 and the mRNA level of Grb2 consistent with results from the proteomic analysis. Finally, the function of these proteins was described and the potential proteins that deserve to be further studied was also highlighted. Our data may provide possible underlying mechanisms for the treatment of stroke using hUC-MSCs.

4.
Antimicrob Agents Chemother ; 59(9): 5768-74, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26169396

RESUMO

Information about intralesional pharmacokinetics (PK) and spatial distribution of tuberculosis (TB) drugs is limited and has not been used to optimize dosing recommendations for new or existing drugs. While new techniques can detect drugs and their metabolites within TB granulomas, they are invasive, rely on accurate resection of tissues, and do not capture dynamic drug distribution in the tissues of interest. In this study, we assessed the in situ distribution of (11)C-labeled rifampin in live, Mycobacterium tuberculosis-infected mice that develop necrotic lesions akin to human disease. Dynamic positron emission tomography (PET) imaging was performed over 60 min after injection of [(11)C]rifampin as a microdose, standardized uptake values (SUV) were calculated, and noncompartmental analysis was used to estimate PK parameters in compartments of interest. [(11)C]rifampin was rapidly distributed to all parts of the body and quickly localized to the liver. Areas under the concentration-time curve for the first 60 min (AUC0-60) in infected and uninfected mice were similar for liver, blood, and brain compartments (P > 0.53) and were uniformly low in brain (10 to 20% of blood values). However, lower concentrations were noted in necrotic lung tissues of infected mice than in healthy lungs (P = 0.03). Ex vivo two-dimensional matrix-assisted laser desorption ionization (MALDI) imaging confirmed restricted penetration of rifampin into necrotic lung lesions. Noninvasive bioimaging can be used to assess the distribution of drugs into compartments of interest, with potential applications for TB drug regimen development.


Assuntos
Antituberculosos/farmacocinética , Mycobacterium tuberculosis/patogenicidade , Rifampina/farmacocinética , Animais , Feminino , Camundongos , Tomografia por Emissão de Pósitrons , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Tuberculose/metabolismo , Tuberculose/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA